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Is it a prime?

Which one of the following number(s) is a prime?

(((((((((23 + 2)3 + 30)3 + 6)3 + 80)3 + 12)3 + 450)3

+ 894)3 + 3636)3 + 70756)3 + 97220

or

(((((((((23 + 3)3 + 30)3 + 6)3 + 80)3 + 12)3 + 450)3

+ 894)3 + 3636)3 + 70756)3 + 97220

Both of them have 20,562 decimal digits.
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What is a prime?

Prime Number: An positive integer p > 1 is called a prime
number if its only positive divisors (factors) are 1 and p
itself.

2,3,5,7,11,13, . . . are primes.
Primes are building blocks of numbers, hence important.
The set of primes is infinite and they are mysterious.
A positive integer n > 1 is composite if it is not a prime.
4,6,8,9,10, . . . are composites.
Is 1 a prime or a composite?
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Fundamental Theorem of Arithmetic

Every positive integer n > 1 can be written as product of
primes and it is unique upto order of primes.

Hence every n ∈ N can be written uniquely in the form

n = pa1
1 pa2

2 · · · p
ar
r

where p1 < p2 < · · · < pr are primes and a1,a2, · · · ,ar are
non negative integers.
For example 100 = 22 · 52.
1 is neither a prime nor a composite else Fundamental
Theorem will be violated.
Every n > 1 has a prime divisor.
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Fundamental Theorem of Arithmetic

A positive integer n is called squarefree if n is not divisible
by a square of a prime number. In that case,
n = p1p2 · · · pr .
1,2,3,6,10 are squarefree. 45 = 5 · 32 is not squarefree.
Every positive integer n > 1 can be written uniquely as
product of a square and a squarefree, i.e., n = ab2 with a
squarefree. Here a is called the squarefree part of n.

For squares, the squarefree part is 1.
In fact 1 is considered empty product of primes and is both
square and squarefree.
Given any set of r primes, there are exactly 2r squarefree
positive integers whose prime factors belong to the set.
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Euclid’s Theorem: Proof of Erdős

Theorem 1.
The set of primes is infinite.

Proof.
Suppose there are finitely many primes p1,p2, · · · ,pr .
Then are are 2r squarefree positive integers.

Let N = 22r + 1. Every 1 < n ≤ N can be written uniquely
as n = ab2 with a squarefree and b ≤

√
n ≤
√

N.
Here the number of choices of b is at most

√
N and there

are 2r choices of a.
Hence there are at most 2r

√
N choices of ab2.

Thus N ≤ 2r
√

N implying
√

N ≤ 2r or N ≤ 22r .
This is a contradiction.
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Prime Counting Function

Let π(X ) := #{primes ≤ x} be the prime counting
function.
π(1) = 0, π(10) = 4, π(100) = 25 etc.
If r = π(N), the above proof implies N ≤ 2r

√
N or

π(N) = r ≥ log N/(2 log 2).
Prime Number Theorem:

π(N) ∼ N
log N

i.e., lim
N→∞

π(N) log N
N

= 1.

Hence for a given N, a number n < N is a prime with
probability 1

logN .
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Carl Friedrich Gauss, Disquisitiones Arithmeticae,
1801

The problem of distinguishing prime numbers from composite
numbers and of resolving the latter into their prime factors is
known to be one of the most important and useful in arithmetic.
It has engaged the industry and wisdom of ancient and modern
geometers to such an extent that it would be superfluous to
discuss the problem at length... Further, the dignity of the
science itself seems to require that every possible means be
explored for the solution of a problem so elegant and so
celebrated.
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Why primes

Mathematicians have tried in vain to this day to discover some
order in the sequence of prime numbers, and we have reason
to believe that it is a mystery into which the mind will never
penetrate.

No branch of number theory is more saturated with mystery
and elegance than the study of prime numbers.
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Some properties of Primes

All prime numbers except 2 and 5 end in 1, 3, 7 or 9.
(2 divide numbers ending in 0, 2, 4, 6 or 8 and 5 divides
numbers ending in 0 or 5.)

Wilson’s Theorem: p is prime if and only if p divides
(p − 1)! + 1.
Fermat’s Little Theorem: If p is prime and a is any
integer, then ap − a is divisible by p.
Bertrand’s postulate: For n > 1, there is always a prime p
with n < p < 2n.
Richert(1948): Each natural number n ≥ 7 can be
expressed as sum of distinct primes.
Copeland-Erdős constant
0.23571113171923293137414 . . ., obtained by writing all
primes is known to be an irrational number.
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Mersenne Primes

Mersenne Primes: Primes of the form 2n − 1 with n prime.
3 = 22 − 1,7 = 23 − 1,31 = 25 − 1,8191 = 213 − 1 are first
few Mersenne primes.
Conjecturally: There are infinitely many Mersenne primes.
Largest known: 24862048 digit prime, 282589933 − 1,
discovered in 2018.
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Factorial/Primorial Primes

Primorial Primes: Primes of the form p1p2 · · · pr + 1.
3 = 2 + 1,7 = 2 ·3 + 1,31 = 2 ·3 ·5 + 1,211 = 2 ·3 ·5 ·7 + 1
are first Primorial primes.
Conjecturally: There are infinitely many Primorial primes.
Largest known: 1+product of primes ≤ 3267113,
discovered in 2021

Factorial Primes: Primes of the form n! + 1.
2 = 1! + 1,3 = 2! + 1,7 = 3! + 1,39916801 = 11! + 1 are
first few factorial primes.
Conjecturally: There are infinitely many Factorial primes.
Largest known: 422429! + 1, discovered in 2022.
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Sophie Germain Primes

Sophie Germain Primes: Odd primes p such that 2p + 1
is also prime.
7 = 2 · 3 + 1,11 = 2 · 5 + 1,23 = 2 · 11,47 = 2 · 23 + 1 give
first few Sophie Germain Primes.
Connected to Fermat’s Last Theorem: The equation
xn + yn = zn has no non-trivial integer solutions if n > 2;
proved first for n divisible by Sophie Germain primes.
Conjecturally: There are infinitely many Sophie Germain
Primes.
Largest known: 2618163404417 · 21290000 − 1, discovered
in 2016.
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Primes of the form n2 + 1 and Fermat Primes

Conjecture: Infinitely many primes of the form n2 + 1.

Fermat Primes: Primes of the form Fn = 22n + 1.
F1 = 5,F2 = 17,F3 = 257 and F4 = 65537 are primes.
Conjecture: For n > 4, Fn is composite.
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Digitally delicate primes or weakly prime number

Digitally delicate prime: Primes which become
composite if any of the digits is replaced by a digit.
Also called Weakly prime numbers.
Erdős: Infinitely many weakly prime numbers.
Smallest: 294001
Largest known: 1000 digit weakly prime

17(101000 − 1)

99
+ 21686652.

Tao: A positive proportion of primes are digically delicate
for all bases.
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Twin Primes

Twin Primes: Primes p such that p + 2 is also prime.
(p,p + 2) is called a Twin prime pair in such case. .
(3,5), (5,7), (11,13), (17,19), (41,43) are first few twin
prime pairs.
Largest known: 2996863034895 · 21290000 ± 1 which has
388342 decimal digits, discovered in 2016.
Conjecturally: There are infinitely many twin prime pairs.

Cousin Primes: Primes pairs of the form (p,p + 4).
Conjecture: Given n ≥ 1, there are infinitely many prime
pairs of the form (p,p + 2n).
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Goldbach Conjecture

Goldbach Conjecture: Every even integer n > 4 is sum of
two odd primes!
Verified for all n ≤ 4× 1018.

Vinogradov’s Theorem: Every sufficiently large odd
integer is a sum of three prime numbers.
Sufficiently large was larger than 101346.
Helfgott: Confirmed for all odd integers.

Shanta Laishram Why Primes?



Goldbach Conjecture

Goldbach Conjecture: Every even integer n > 4 is sum of
two odd primes!
Verified for all n ≤ 4× 1018.
Vinogradov’s Theorem: Every sufficiently large odd
integer is a sum of three prime numbers.
Sufficiently large was larger than 101346.
Helfgott: Confirmed for all odd integers.

Shanta Laishram Why Primes?



Prime Gaps

Consecutive primes differ by at least 2.
Let p1 = 2,p2 = 3,p3 = 5, · · · be sequences of primes.
Question: How large can be the gaps pn+1 − pn?
Goldbach: pn+1 − pn < pn for all n.

Riemann Hypothesis: pn+1 − pn � p
1
2
n .

Grimm’s Conjecture: pn+1 − pn � p0.46
n .
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Prime Matching

24 25 26 27 28
2 5 13 3 7

90 91 92 93 94 95 96
5 7 or 13 23 31 47 19 2 or 3

2018 2019 2020 2021 2022 2023 2024 2025 2026
1009 673 101 47 337 17 23 5 1013
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Grimm’s Conjecture

For n, k such that n + 1,n + 2, . . . ,n + k are consecutive
composite numbers, there are distinct primes p1,p2, . . . ,pk
such that p1|(n + 1),p2|(n + 2), . . .pk |(n + k).

This is the famous Grimm’s Conjecture, considered quite
difficult to prove.
Verified for all n and k with n ≤ 1012.
It implies Legendre Conjecture: Given n, there is a prime
between n2 and (n + 1)2.
In fact it implies, there is a prime between n and n + n.46

for n sufficiently large, which is a result better than that
given by Riemann Hypothesis, the Holy Grail of Number
Theory, if not for the whole of mathematics.
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Riemann Hypothesis
For s = σ + it ∈ C with σ > 1, define the function

ζ(s) =
∞∑

n=1

1
ns .

This function can be analytically continued to whole of C.
The resulting function is called Riemann Zeta Function,
denoted by ζ(s).

The Riemann zeta function satisfies the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

where Γ is the Gamma function.
The functional equation shows that the Riemann zeta
function has zeros at −2,−4, . . . which are called the trivial
zeros. Other zeros are called non-trivial zeros and such
zeros s satisfy 0 ≤ R(s) ≤ 1.
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Riemann Hypothesis

The $1000000 question is: If s = σ + it ∈ C is a non trivial
zero, then R(s) = 1

2 .

This a very powerful conjecture and it has lots of
implications in Number Theory and other areas of
mathematics.
In fact showing that ζ(1 + it) 6= 0 implies the Prime Number
Theorem: The number of primes upto x is around x

log x
when x →∞.
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Primitive Prime Divisors

Given a sequence of integers a0,a1, · · · , we say that p is a
primitive prime divisor of an if p|an but p - am for m < n and
am 6= 0.

Fibonacci Sequence Fn: is defined by F0 = 0,F1 = 1 and
Fn+2 = Fn+1 + Fn for n ≥ 0.
0,1,1,2,3,5,8,13,21,34,55,89,144,233, · · · are first few
terms of the sequence.
It is an important question to show (Fn) contains infinitely
many primes.
However after 144, there exist primitive prime divisors of Fn
for each n which is a very powerful result.
It also gives another proof(more difficult) of infinitude of
primes.
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It is an important question to show (Fn) contains infinitely
many primes.
However after 144, there exist primitive prime divisors of Fn
for each n which is a very powerful result.
It also gives another proof(more difficult) of infinitude of
primes.
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An example

From the factorization of

F210 =23 × 5× 11× 13× 29× 31× 61× 71× 211× 421
911× 21211× 141961× 767131× 8288823481

guess a primitive prime factor of F210!
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An example

F105 = 2× 5× 13× 61× 421× 141961× 8288823481
F70 = 5× 11× 13× 29× 71× 911× 141961

F42 = 23 × 13× 29× 211× 421

F30 = 23 × 5× 11× 31× 61.

From

F210 =23 × 5× 11× 13× 29× 31× 61× 71× 211× 421
911× 21211× 141961× 767131× 8288823481,

the primitive divisors of F210 are 21211 and 767131.
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Fibonacci as product of Factorials

Theorem 2.
The largest solution of the equation

Fn = m1!m2! · · ·mk !

with 2 ≤ m1 ≤ m2 ≤ · · · ≤ mk is F12 = 3!4! = (2!)23!.

Proof.
Let n > 12. Then Fn has a primitive divisor p ≡ ±1 (mod n) so
that p ≥ n − 1. Also p|mk so that mk ≥ p ≥ (n − 1). Hence

αn−1 ≥ αn − βn

α− β
= Fn ≥ mk ! ≥ (n − 1)! >

(
n − 1

e

)n−1

where α = 1+
√

5
2 , β = 1−

√
5

2 and using t! > (t/e)t . This gives
12 ≤ n − 1 ≤ eα which is a contradiction.
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Radical and abc

Given n, the radical of n is given by R(n) =
∏

p|n p and put
R(1) = 1.
R(100) = 2 · 5 = 10 and R(81) = 3.

Oesterle-Masser or abc Conjecture: Given ε > 0, there is
a constant κε, depending only on abc, such that for any
pairwise coprime positive integers a,b, c with a + b = c,
we have

c < κε

∏
p|abc

p

1+ε

.

Considered one of the most difficult problems in Number
theory, it has lots of interesting and important
consequences, including Fermat’s Last Theorem.
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Primes in arithmetic progression

Green-Tao: Sequence of primes contain arbitrarily long
arithmetic progressions.
That is, given n, there are n primes in an arithmetic
progression.
Largest known AP of primes: 27 primes in AP, discovered
in 2019:

224584605939537911 + 81292139 · 23m

for m = 0,1,2, · · · ,26.
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Primes dividing a product of consecutive integers

Well-known: A product of k ≥ 1 consecutive positive
integers is divisible by k !.
One of the combinatorial proofs is given by the fact that the
binomial coefficient

(n
k

)
∈ Z.

nCk =

(
n
k

)
=

n(n − 1) · · · (n − k + 1)

k !
.

Each prime p ≤ k divides a product of k ≥ 1 consecutive
positive integers.
We can ask if there is a prime > k dividing a product of k
consecutive positive integers.
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A result of Sylvester-Erdős

Theorem of Sylvester-Erdős: A product of k consecutive
integers each of which exceeds k is divisible by a prime
greater than k . In other words,

P((n + 1)(n + 2) · · · (n + k)) > k when n ≥ k .

Here P(m) stands for the largest prime divisor of m with
the convention P(1) = 1.
This implies Bertrand’s Postulate: Taking n = k gives a
prime p with k < p < 2k .
Shorey-Tijdeman: For n ≥ 1,d > 1, k ≥ 3 with
gcd(n,d) = 1,

P(n(n+d)(n+2d) · · · (n+(k−1)d)) > k for (n,d , k) 6= (2,7,3).
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Prime divisor of an AP

Conjecture: For positive integers n,d , k ≥ 4 with
gcd(n,d) = 1 and n ≥ dk ,

P(n(n + d)(n + 2d) · · · (n + (k − 1)d)) >
dk
200

except for finitely many (n,d , k).

Considered a difficult problem, verified for all k ≤ 400 and
it has many interesting consequences.
Implication: A product of four or consecutive terms of an
arithmetic progression is never a square.
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Primes and Irreducibility of polynomials

Primes play an important role in showing irreducibility of
polynomials.
Well known Eisenstein’s Criterion: Let

f (x) = anxn + an−1xn−1 + · · ·+ ax + a0 ∈ Z[X ].

If there is a prime p such that p|ai for 0 ≤ i < n,p - an and
p-a0, then f (x) is irreducible.

Use of p−adic Newton polygons and Sylvester’s Theorem
imply:

En(x) = 1 + x +
x2

2!
+ · · ·+ xn

n!

is irreducible for all n.
In fact, primes also play an important role in computing
Galois groups for a large infinite family of polynomials.
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Check if it is a prime?

101: Easy

65537: Still managable!
2123456789 − 1 : Still easy since 7 = 23 − 1 is a factor!
213466917 − 1 : Quite Difficult!
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Top Ten Largest Known Primes

Prime Number of Digits Year
282589933 − 1 24862048 2018
277232917 − 1 23249425 2018
274207281 − 1 22338618 2016
257885161 − 1 17425170 2013
243112609 − 1 12978189 2008
242643801 − 1 12837064 2009

Φ3(−5166931048576) 1981518 2023
Φ3(−4658591048576) 11887192 2023

237156667 − 1 11185272 2008
232582657 − 1 9808358 2006
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Awards for finding large primes

The Electronic Frontier Foundation (EFF) is offering prizes
for finding large primes.

Offered a prize of US Dollar 100,000 (Rs 4500000 approx.
that time) to GIMPS and the UCLA mathematics
department for discovering a 13 million digit prime number
in August 2008.
Will offer US Dollar 150,000 (Rs 10500000 approx) for
prime with 100 million digits and US Dollar
250,000(approx. Rs 1.75 Crore) for prime with 1 billion
digits.
Paid US Dollar 50,000 for prime with 1 million digits.
RSA Factoring Challenge offered prizes up to US Dollar
200,000 for factoring numbers which is product of two
primes.
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Some facts

If n is not a prime, it is divisible by a prime p ≤
√

n.

That is the basis of Sieve of Erasthosnes which we learnt
in school.
Checking the divisibility by all the primes upto

√
n will take

a lot of time and is not efficient.
The Rabin-Miller Primality testing Algorithm is one of the
fastest probabilistic and widely used algorithm for checking
primes. But it is not deterministic.
Elliptic Curve Primality proving is deterministic but
polynomial time.
AKS Algorithm is the only known polynomial time
deterministic algorithm.
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Primality Testing Algorithms

Rabin Miller Primality Test: Fast but not deterministic
AKS Algorithm: Polynomial time deterministic algorithm
Elliptic Curve Primality Testing: deterministic.
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A large prime

(((((((((23 + 3)3 + 30)3 + 6)3 + 80)3 + 12)3 + 450)3 +
894)3 + 3636)3 + 70756)3 + 97220 is prime!

20,562 decimal digits.
Primality was proved using fastECPP on several networks
of workstations, was suggested as a challenge for primality
proving.
Started on 32-bit machines (Sep-Oct 2005), finished on
nine 64-bit bi-processors (Feb-June 2006).
1st phase: 1900 days (396 for sqrt; 384 for Cornacchia;
1353 for PRP tests)
2nd phase: 319 days (8 days for building all HD ’s; 277 for
solving HD mod p)
Cumulated timings are given w.r.t. AMD Opteron(tm)
Processor 250 at 2.39 GHz.
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Miller-Rabin Primality testing Algorithm

Let n be an odd composite number and suppose that
an−1 ≡ 1 modulo n.
Write n − 1 = 2sm with m odd.

Define bj ≡ a2j m(mod n) for each j = 0,1,2, . . . , s.
an−1 ≡ 1 implies bs = 1.
If b0 = 1, then bj = 1 for each j .
If b0 6= 1, then there exists a unique j with bj 6= 1 and
bj+1 = 1.
If bj 6= −1, then it is a non-trivial square roots of 1 and
hence n is composite.
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If b0 = 1, then bj = 1 for each j .

If b0 6= 1, then there exists a unique j with bj 6= 1 and
bj+1 = 1.
If bj 6= −1, then it is a non-trivial square roots of 1 and
hence n is composite.

Shanta Laishram Why Primes?



Miller-Rabin Primality testing Algorithm

Let n be an odd composite number and suppose that
an−1 ≡ 1 modulo n.
Write n − 1 = 2sm with m odd.
Define bj ≡ a2j m(mod n) for each j = 0,1,2, . . . , s.
an−1 ≡ 1 implies bs = 1.
If b0 = 1, then bj = 1 for each j .
If b0 6= 1, then there exists a unique j with bj 6= 1 and
bj+1 = 1.

If bj 6= −1, then it is a non-trivial square roots of 1 and
hence n is composite.

Shanta Laishram Why Primes?



Miller-Rabin Primality testing Algorithm

Let n be an odd composite number and suppose that
an−1 ≡ 1 modulo n.
Write n − 1 = 2sm with m odd.
Define bj ≡ a2j m(mod n) for each j = 0,1,2, . . . , s.
an−1 ≡ 1 implies bs = 1.
If b0 = 1, then bj = 1 for each j .
If b0 6= 1, then there exists a unique j with bj 6= 1 and
bj+1 = 1.
If bj 6= −1, then it is a non-trivial square roots of 1 and
hence n is composite.

Shanta Laishram Why Primes?



Rabin-Miller Primality testing Algorithm

Lemma 3.

Suppose p is an odd prime. Let p − 1 = 2km where m is odd.
Let 1 < a < p. Either

am ≡ 1(p)

or one of

am,a2m,a22m,a23m, · · · ,a2k−1m

is congruent to −1(p).
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Rabin-Miller Primality testing Algorithm

Fix the number t of iterations.
Write n − 1 = 2sm with m odd.
For i = 1,2, . . . , t : Choose a random integer
a ∈ {2,3, . . . ,n − 1} and compute b0 ≡ am modulo n.
If b0 6= 1, compute b0,b1 ≡ b2

0,b2 ≡ b2
1, · · · ,bj with

j ≤ s − 2,bj+1 = 1 modulo n.
If bj 6= −1 modulo n, return n is composite.
If bs−1 ≡ −1 modulo n, return n is composite.
Else n is prime.

The probability of a composite n declared as a prime is not
more than 1

4t since the fraction of bases in Zn for which n is
a strong pseudoprime is at most 1/4.
Choosing t appropriately, we can reduce the error
probability to a very low value.
Running time is O((log n)3).
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Agarwal-kayal-Saxena(AKS) Algorithm

It is the only known polynomial time deterministic
algorithm.

Works on the the fact that n is a prime if and only n|
(n

k

)
for

each 1 ≤ k ≤ n − 1.
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AKS Algorithm

For any prime number p we let

Φp(x) =
xp − 1
x − 1

= xp−1 + xp−2 + · · ·+ x + 1

denote the p−th cyclotomic polynomial.
Let ζp be a zero of Φp(x) and let Z[ζp] denote the ring
generated by ζp over Z.
For any n ∈ Z we write Z[ζp]/(n) for the residue ring Z[ζp]
modulo the ideal (n) generated by n. For n 6= 0, this is a
finite ring.
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Basis for AKS Algorithm

Lemma 4.
Let n be an odd positive integer and let r be a prime number.
Suppose that

1 n is not divisible by any of the primes r ;
2 the order of n(mod r) is at least (log n/ log 2)2;
3 for every 0 ≤ j < r we have (ζr + j)n = ζn

r + j in Z[ζp]/(n).
Then n is a prime power.
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AKS Algorithm

Let n > 1 be an odd integer.
First check that n is not a proper power of an integer.
By successively trying r = 2,3, . . . , determine the smallest
prime r not dividing n nor any of the numbers ni − 1 for
1 ≤ i ≤ (log n/ log 2)2.
For 0 ≤ j < r − 1 check that (ζr + j)n = ζn

r + j in Z[ζp]/(n).
If the number n does not pass the tests, it is composite. If it
passes them, it is a prime.
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Proof of Correctness

If n is prime, it passes the tests by Fermat’s little theorem.

Conversely suppose that n passes the tests.
We check the conditions of Lemma.
By the definition of r , the number n has no prime divisors
≤ r .
Since r does not divide any of the ni − 1 for
1 ≤ i ≤ (log n/ log 2)2, the order of n modulo r exceeds
(log n/ log 2)2.
This shows that the second condition of Lemma is
satisfied.
Since test (3) has been passed successfully, the third
condition is satisfied.
We deduce that n is a prime power. Since n passed the
first test, it is therefore prime.
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Can you factor as product of primes?

77: Easy

11639 : Still managable! = 103 · 113
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What about the prime factors of this number
RSA-240?

1246203667817187840658350446081065904348
2037465167880575481878888328966680118821
0855036039570272508747509864768438458621
0548655379702539305718912176843182863628
4694840530161441643046806687569941524699
318570418303051254959437 1372159029236099
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RSA Factoring Challenge

RSA Laboratories which designs protocols for RSA
cryptosystem has a set of numbers(which is a product of
two large primes) and challenges everyone to factor it.

There are prizes ranging from US Dollars 1000 to 10000.
A research team led by Emmanuel Thomé at France’s
National Institute for Computer Science and Applied
Mathematics(INRIA) successfully factored RSA-240 in
December 2019.
Other members in the team included Fabrice Boudot,
Pierrick Gaudry, Aurore Guillevic, Nadia Heninger and Paul
Zimmermann.
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The 795 bits number RSA−240

1246203667817187840658350446081065904348
2037465167880575481878888328966680118821
0855036039570272508747509864768438458621
0548655379702539305718912176843182863628
4694840530161441643046806687569941524699
318570418303051254959437 1372159029236099

and factors are

5094359522858399145550510235808437141326
4838202411147318666029652182120646974670
0620316443478873837606252372049619334517

and

2446242088383181505678131390240028966538
0209257893140145204122133655847709517815
5258218897735030590669041302045908071447.
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RSA-240

The CPU time spent amounts to approximately 900
core-years on a 2.1 GHz Intel Xeon Gold 6130 CPU.
RSA-240 sieving: 800 physical core-years
RSA-240 matrix: 100 physical core-years
In fact, record Factoring done along with another record of
a Discrete Logarithm of the same size at the same time
with a total computation time of roughly 4000 core-years
Worked with an open source software, CADO-NFS, used
to implement the Number Field Sieve.
CADO-NFS comprises 300,000 lines of code written in C
and C++.
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Factoring Algorithms

Elliptic Curve Factoring Method
Number Field Sieve
Pollard-ρ factoring method
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Fermat’s Factoring Method

Can you factor N = 13199?

We will use a very simple idea to factor N.
If N = a2 − b2 and a− b 6= 1, then N = (a− b)(a + b).
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Fermat’s Factoring Method: N = 13199

m m2 − N m m2 − N
115 26 124 2117
116 257 125 2426
117 490 126 2677
118 725 127 2930
119 962 128 3185
120 1201 129 3442
121 1442 130 3701
122 1685 131 3962
123 1930 132 4225 = 652

N = 1322 − 652 = (132− 65)(132 + 65) = 67 · 197
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Applications

Public Key Cryptography algorithms and Internet Security

Used for hash tables and pseudorandom number
generators.
Some rotor machines were designed with a different
number of pins on each rotor, with the number of pins on
any one rotor either prime, or coprime to the number of
pins on any other rotor. This helped generate the full cycle
of possible rotor positions before repeating any position.
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RSA Cryptosystem and Prime numbers

The basis of the RSA Cryptosystem is Euler’s Theorem.

Theorem 5.
Let a and n be positive integers such that gcd(a,n) = 1. Then

aϕ(n) ≡ 1(mod n)

where ϕ(n) = #{i : 1 ≤ i < n, gcd(a,n) = 1}.
Here i ≡ j(mod n) means n|(i − j).

In particular, for a prime p and any integer a, we have

p|(ap−1 − 1)

which is Fermat’s Little Theorem.

Shanta Laishram Why Primes?



RSA Cryptosystem and Prime numbers

The basis of the RSA Cryptosystem is Euler’s Theorem.

Theorem 5.
Let a and n be positive integers such that gcd(a,n) = 1. Then

aϕ(n) ≡ 1(mod n)

where ϕ(n) = #{i : 1 ≤ i < n, gcd(a,n) = 1}.
Here i ≡ j(mod n) means n|(i − j).

In particular, for a prime p and any integer a, we have

p|(ap−1 − 1)

which is Fermat’s Little Theorem.

Shanta Laishram Why Primes?



Helen Spalding: Let Us Now Praise Prime Numbers
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7× 172 + 1 = 813258173412030282336987549031
− 813258173412030282336987547007.
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